Teresa Audesirk • Gerald Audesirk • Bruce E. Byers

Biology: Life on Earth Eighth Edition

Lecture for Chapter 4
Cell Structure and Function

Chapter 4 Outline

- 4.1 What Is the Cell Theory? p. 59
- 4.2 What Are the Basic Attributes of Cells?
 p. 59
- 4.3 What Are the Major Features of Eukaryotic Cells? p. 63
- 4.4 What Are the Major Features of Prokaryotic Cells? p. 75

Section 4.1 Outline

- 4.1 What Is the Cell Theory?
 - All Living Things Are Composed of One or More Cells

What Is the Cell Theory?

- Tenets of Modern Cell Theory
 - Every living organism is made of one or more cells
 - The smallest organisms are made of single cells while multicellular organisms are made of many cells
 - All cells arise from pre-existing cells

Section 4.2 Outline

4.2 What Are the Basic Attributes of Cells?

- Cell Function Limits Cell Size
- All Cells Share Common Features
- There Are Two Basic Types of Cells:
 Prokaryotic and Eukaryotic

Cell Function Limits Cell Size

Most cells are small, ranging from 1 to 100 micrometers in diameter

Cell Function Limits Cell Size

- Cells need to exchange nutrients and wastes with the environment
- No part of the cell can be far away from the external environment

All Cells Share Common Features

 A plasma membrane encloses all cells and regulates material flow

Figure 4-2 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

All Cells Share Common Features

- Cytoplasm is the fluid interior where a cell's metabolic reactions occur
 - Contains organelles
 - Fluid portion (cytosol) contains water, salts, and organic molecules

Figure 4-3 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-4 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

There Are Two Basic Cell Types

- Cells are either
 - Prokaryotic
 - Eukaryotic

There Are Two Basic Cell Types

- Prokaryotic
 - Before nucleus

Figure 4-20a Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-20b Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

There Are Two Basic Cell Types

- Eukaryotic
 - True nucleus

Figure 4-3 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-4 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Section 4.3 Outline

4.3 What Are the Major Features of Eukaryotic Cells?

- Some Eukaryotic Cells Are Supported by Cell Walls
- The Cytoskeleton Provides Shape, Support, and Movement
- Cilia and Flagella Move the Cell Through Fluid or Move Fluid Past the Cell
- The Nucleus Is the Control Center of the Eukaryotic Cell

Section 4.3 Outline

4.3 What Are the Major Features of Eukaryotic Cells? continued

- Eukaryotic Cytoplasm Includes an Elaborate
 System of Membranes
- Vacuoles Serve Many Functions
- Mitochondria Extract Food Energy
- Chloroplasts Are the Sites of Photosynthesis
- Plants Use Plastids for Storage

Major Features

- Eukaryotic cells are > 10 μm long
- A variety of membrane-enclosed organelles perform specific functions
- The cytoskeleton provides shape and organization

Major Features

 Animal and plant cells differ with regards to cell walls, chloroplasts, plastids, central vacuoles, and centrioles

Cell Walls

- Stiff coatings on outer surfaces of bacteria, plants, fungi, and some protists are cell walls
 - Cells walls support and protect fragile cells and are usually porous
- Cell walls are composed of polysaccharides like cellulose or chitin

The Cytoskeleton

- Cytoskeleton forms a network of protein fibers within the cytoplasm
 - Composed of microfilaments, intermediate filaments, and microtubules

Figure 4-6a Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-6b Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

The Cytoskeleton

- Main functions of cytoskeleton
 - Maintaining and changing cell shape
 - Providing for cell movement
 - Providing for organelle movement, including vesicle endo- and exocytosis
 - Facilitating cell division in chromosome movements and cytokinesis

Cilia and flagella are extensions of the plasma membrane

Figure 4-7 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

- Cilia and flagella are composed of microtubules in a "9+2" arrangement formed by centrioles which become membrane-anchored structures called basal bodies
- Cilia are short (10-25 μm) and numerous while flagella are long (50-75 μm) but few in any cell

 Long pairs of microtubules slide along each other (using ATP) causing movement of cilia and flagella

Functions

- Cilia or flagella may be used to move cell about
- Cilia may be used to create currents of moving fluid in their environment

Figure 4-8 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-8 part 1 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

cilia lining trachea

flagellum of human sperm

Figure 4-8 part 2 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

- The nucleus is an organelle that contains three major parts
 - Nuclear envelope
 - Chromatin
 - Nucleolus

- The nuclear envelope separates chromosomes from cytoplasm
 - Envelope is a double membrane with nuclear pores for transport
 - Outer membrane is studded with ribosomes

Figure 4-9a Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-9b Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-3 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

- The nucleus contains DNA in various configurations
 - Compacted chromosomes (during cell division)
 - Diffuse chromatin (as DNA directs reactions through an RNA intermediate by coding for proteins)

Figure 4-10 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

- Darker area within the nucleus called the nucleolus
 - Functions as the site of ribosome synthesis
 - Ribosomes synthesize proteins

 Membrane system includes the plasma membrane and organelle membranes

- Plasma membrane isolates cell and allows for regulation of transport
 - Plants, fungi, and some protists additionally have a cell wall outside the plasma membrane

 Vesicles are membranous sacs that transport substances among the separate regions of the membrane system

- Endoplasmic reticulum (ER) forms a series of enclosed, interconnected channels within cell
- There are two forms of ER
 - Smooth ER
 - Rough ER

Figure 4-12 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-12 part 1 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

- Smooth ER has no ribosomes
 - Contains enzymes that detoxify drugs (in liver cells) or synthesizes lipids

smooth endoplasmic reticulum

- Rough ER is studded with ribosomes on outside
 - Produces proteins and phospholipids destined for other membranes or for secretion (export)

rough endoplasmic reticulum

- Golgi Apparatus is a set of stacked flattened sacs
 - Receives proteins from ER (via transport vesicles) and sorts them by destination
 - Modifies some molecules (e.g. proteins to glycoproteins)
 - Packages material into vesicles for transport

Figure 4-13 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-13 part 1 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

- Three fates of substances made in the membrane system:
 - Secreted proteins made in RER, travel through Golgi, then are exported through plasma membrane
 - Figure 4-14 illustrates this process for antibodies, proteins produced by white blood cells to inactivate foreign disease-causing agents

Figure 4-14 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

- Digestive proteins made in RER, travel through Golgi, and are packaged as lysosomes for use in cell
 - Lysosomes fuse with food vacuoles and digest food into basic nutrients

Figure 4-15 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

3. Membrane proteins and lipids made in ER, travel through Golgi, and replenish or enlarge organelle and plasma membranes

Figure 4-13 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Vacuoles Serve Many Functions

- Fluid-filled sacs with a single membrane
- Functions of vacuoles
 - Contractile vacuoles in freshwater
 organisms used to collect and pump water out

Figure 4-16 part 1 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Vacuoles Serve Many Functions

- Functions of vacuoles (continued)
 - Plant central vacuoles used in several ways
 - Maintain water balance
 - Store hazardous wastes, nutrients, or pigments
 - Provide turgor pressure on cytoplasm to keep cells rigid

Mitochondria Extract Food Energy

- Mitochondria are round, oval, or tubular sacs of double-membranes
 - Inner membrane is folded into cristae
 - Intermembrane compartment lies between inner and outer membranes
 - Matrix space within inner membrane

0.2 micrometer

Figure 4-17 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-17 part 1 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

0.2 micrometer

Figure 4-17 part 2 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Mitochondria Extract Food Energy

 Mitochondria may be remnants of free-living prokaryotes (endosymbiotic hypothesis)

Mitochondria Extract Food Energy

- Function as the "powerhouses of the cell"
 - Mitochondria extract energy from food molecules
 - Extracted energy is stored in high-energy bonds of ATP
 - Energy extraction process involves anaerobic and aerobic reactions

Chloroplasts

- Chloroplasts are specialized organelles surrounded by a double membrane
 - Outer membrane
 - Inner membrane encloses the stroma space
 - Stacked hollow membranous sacs (grana) within stroma are called thylakoids

Figure 4-18 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-18 part 1 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

1 micrometer

Chloroplasts

 The thylakoid membranes contain chlorophyll and other pigments that capture sunlight and make sugar, CO₂, and water (photosynthesis)

Plants Use Plastids for Storage

- Plastids found only in plants and photosynthetic protists
- Surrounded by a double membrane

Plants Use Plastids for Storage

Functions

- Storage for photosynthetic products like starch
- Storage of pigment molecules giving color to ripe fruit

Figure 4-19 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Section 4.4 Outline

- 4.4 What Are the Major Features of Prokaryotic Cells?
 - Prokaryotic Cells Are Small and Possess
 Specialized Surface Features
 - Prokaryotic Cell Have Fewer Specialized
 Structures Within Their Cytoplasm

Most prokaryotic cells (bacteria) are < 5
 <p>
µm long

 $\begin{array}{lll} \textbf{Units of measurement:} & 1 \ centimeter \ (cm) = 1/100 \ m & 1 \ micrometer \ (\mu m) = 1/1,000,000 \ m \\ 1 \ meter \ (m) = 39.37 \ inches & 1 \ millimeter \ (mm) = 1/1000 \ m & 1 \ nanometer \ (nm) = 1/1,000,000,000 \ m \\ \end{array}$

Figure 4-1 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

A stiff cell wall is usually present

Figure 4-20 Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

Figure 4-20c Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

- Some bacteria are propelled by flagella
- Infectious bacteria may have polysaccharide adhesive capsules and slime layers on their surfaces
- Pili and fimbriae are protein projections in some bacteria that further enhance adhesion

Can take the shape of rods, spheres, or helices

Figure 4-20b Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.

- Single, circular chromosome of DNA
 - Chromosome found coiled in an area called the nucleoid
- Small rings of DNA (plasmids) located in the cytoplasm

- No nuclear membrane or membranebound organelles present
- Some have internal membranes used to capture light
- Cytoplasm may contain food granules

photosynthetic - membranes

Figure 4-20d Biology: Life on Earth, 8/e © 2008 Pearson Prentice Hall, Inc.